Difference between revisions of "Protocols"

From Xenbase
Jump to: navigation, search
(Cell-free extracts, Cell-free systems)
(External links to the Journal of Visualized Experiments (JOVE) - Xenopus embryo [http://www.jove.com/keyword/xenopus+embryo] - excellent video demonstrations)
Line 58: Line 58:
 
**Study of the DNA Damage Checkpoint using ''Xenopus'' Egg Extracts - Willis et al. [http://www.jove.com/video/4449/study-of-the-dna-damage-checkpoint-using-xenopus-egg-extracts]
 
**Study of the DNA Damage Checkpoint using ''Xenopus'' Egg Extracts - Willis et al. [http://www.jove.com/video/4449/study-of-the-dna-damage-checkpoint-using-xenopus-egg-extracts]
 
**Two Types of Assays for Detecting Frog Sperm Chemoattraction - Burnett et al. [http://www.jove.com/video/3407/two-types-of-assays-for-detecting-frog-sperm-chemoattraction]
 
**Two Types of Assays for Detecting Frog Sperm Chemoattraction - Burnett et al. [http://www.jove.com/video/3407/two-types-of-assays-for-detecting-frog-sperm-chemoattraction]
**Comparative in vivo Study of gp96 Adjuvanticity in ''X. laevis'' - Nedelkovska et al. [http://www.jove.com/video/2026/comparative-vivo-study-gp96-adjuvanticity-frog-xenopus]
+
**Comparative in vivo Study of gp96 Adjuvanticity in ''X. laevis'' - Nedelkovska et al. 2010. [http://www.jove.com/video/2026/comparative-vivo-study-gp96-adjuvanticity-frog-xenopus]
 
**Patch Clamp and Perfusion Techniques - Yang et al. [http://www.jove.com/video/2269/patch-clamp-perfusion-techniques-for-studying-ion-channels-expressed]
 
**Patch Clamp and Perfusion Techniques - Yang et al. [http://www.jove.com/video/2269/patch-clamp-perfusion-techniques-for-studying-ion-channels-expressed]
 
**Patch Clamp Recording of Ion Channels - Brown et al. [http://www.jove.com/video/936/patch-clamp-recording-of-ion-channels-expressed-in-xenopus-oocytes]
 
**Patch Clamp Recording of Ion Channels - Brown et al. [http://www.jove.com/video/936/patch-clamp-recording-of-ion-channels-expressed-in-xenopus-oocytes]
Line 64: Line 64:
 
**Stem cell-like ''Xenopus'' Embryonic Explants to Study Early Neural Developmental Features In Vitro and In Vivo - BC.Durand [https://www.jove.com/video/53474/stem-cell-like-xenopus-embryonic-explants-to-study-early-neural]
 
**Stem cell-like ''Xenopus'' Embryonic Explants to Study Early Neural Developmental Features In Vitro and In Vivo - BC.Durand [https://www.jove.com/video/53474/stem-cell-like-xenopus-embryonic-explants-to-study-early-neural]
 
**Dissection of ''Xenopus laevis'' Neural Crest for ''in vitro'' Explant Culture or in vivo Transplantation - Millet & Monsoro-Burq [https://www.jove.com/video/51118/dissection-xenopus-laevis-neural-crest-for-vitro-explant-culture-or]
 
**Dissection of ''Xenopus laevis'' Neural Crest for ''in vitro'' Explant Culture or in vivo Transplantation - Millet & Monsoro-Burq [https://www.jove.com/video/51118/dissection-xenopus-laevis-neural-crest-for-vitro-explant-culture-or]
 +
**Reconstitution Of β-catenin Degradation In Xenopus Egg Extract.  Chen et al. 2020. [https://www.jove.com/video/51425/reconstitution-of-catenin-degradation-in-xenopus-egg-extract]
 +
 
==='''Protocols published in Journals'''===
 
==='''Protocols published in Journals'''===
 
**Morpholino Studies in ''Xenopus'' Brain Development, Bestman and Cline. 2019, Brain Development pp 377-395, Part of the Methods in Molecular Biology book series (MIMB, volume 2047) [[https://link.springer.com/protocol/10.1007%2F978-1-4939-9732-9_21#enumeration]]
 
**Morpholino Studies in ''Xenopus'' Brain Development, Bestman and Cline. 2019, Brain Development pp 377-395, Part of the Methods in Molecular Biology book series (MIMB, volume 2047) [[https://link.springer.com/protocol/10.1007%2F978-1-4939-9732-9_21#enumeration]]

Revision as of 20:25, 28 January 2020


Books for Xenopus Research and Protocols

  • Xenopus Protocols: Post-Genomic Approaches. Hoppler and Vize, 2012 [1]
    • expanded second edition with novel approaches inspired by X. tropicalis genome sequencing.
  • The Laboratory Xenopus sp. Green, 2010 [2]
    • a highly detailed manual containing Xenopus husbandry, management, veterinary care, and frog and equipment vendor information
  • Xenopus Protocols: Cell Biology and Signal Transduction Liu (First edition), 2006 [3]
    • step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents.
  • Color Atlas of Xenopus laevis Histology, Wiechmann and Wirsig-Wiechmann, 2003 [4]
    • central source on the microscopic anatomy of cells, tissues, and major organs of Xenopus laevis.
  • Early Development of Xenopus laevis: A Laboratory Manual, Sive, Grainger, and Harland, 2000 [5]
    • comprehensive collection of protocols for the study of early development in Xenopus embryos
  • Transgenic Xenopus: Microinjection Methods and Developmental Neurobiology, Seidman and Soreq, 1997 [6]
    • referenced guide to the use of microinjected embryos studying the role and regulation of nervous system proteins during development.
  • Atlas of Xenopus Development, Bernardini, Prati, Bonetti, and Scari, 1999 [7]
    • scanning, transmission, and light microscopy images of Xenopus embryonic development.
  • Normal Table of Xenopus laevis (Daudin), Nieuwkoop and Faber (Third edition), 1994 [8]
    • a systematic and chronological description of Xenopus laevis development.
  • Xenopus laevis: Practical Uses in Cell and Molecular Biology, Volume 36, Kay and Peng, 1991 [9]
    • detailed description of a wide range of uses for Xenopus laevis oocytes and embryos in cell and molecular biology.
  • The early development of Xenopus laevis. An atlas of the histology, Hausen and Riebesell, 1991 [10]
    • detailed histological sections of Xenopus embryonic development

Online Xenopus Resources

External links to the Journal of Visualized Experiments (JOVE) - Xenopus embryo [11] - excellent video demonstrations

    • Functional Evaluation of Olfactory Pathways in Living Xenopus Tadpoles - Terni et al. -[12]
    • Obtaining Eggs from Xenopus laevis Females - Cross & Powers [13]
    • Microinjection of Xenopus laevis Oocytes - Cohen et al. - [14]
    • Fertilization of Xenopus oocytes, Host Transfer Method - Schneider et al. [15]
    • Tissue Determination Using Animal Cap Transplant (ACT) Assay in X. laevis - Viczian & Zuber [16]
    • Blastomere Explants to Test for Cell Fate Commitment - Grant et al. [17]
    • Transgenic Xenopus laevis by Restriction Enzyme Mediated Integration and Nuclear Transplantation - Amaya & Kroll [18]
    • Organizer and Animal Pole Explants from X. laevis Embryos and Cell Adhesion Assay - Ogata & Cho [19]
    • Plastic Embedding and Sectioning of X. laevis Embryos - Ogata1 et al. [20]
    • Visualizing RNA Localization in Xenopus Oocytes - Gagnon & Mowry [21]
    • Neural Explant Cultures from Xenopus laevis - Lowery et al. [22]
    • Translocation of Fluorescent Proteins in Xenopus Ectoderm in Response to Wnt Signaling - Itoh & Sokol [23]
    • Dissection, Culture, and Analysis of X. laevis Embryonic Retinal Tissue - McDonough et al. [24]
    • X. tropicalis Egg Extracts to Identify Microtubule-associated RNAs - Sharp & Blower [25]
    • Electroporation of Craniofacial Mesenchyme - Tabler & Liu [26]
    • Electrophysiological Recording from Xenopus Nerve-muscle Co-cultures - Yazejian et al. [27]
    • Single Cell Electroporation in vivo within the Intact Developing Brain - Hewapathirane & Haas - [28]
    • Live-cell Imaging and Quantitative Analysis of Embryonic Epithelial Cells - Joshi & Davidson [29]
    • Preparation and Fractionation of Xenopus laevis Egg Extracts - Cross & Powers [30]
    • In Vitro Nuclear Assembly Using Fractionated Xenopus Egg Extracts - Cross & Powers [31]
    • Study of the DNA Damage Checkpoint using Xenopus Egg Extracts - Willis et al. [32]
    • Two Types of Assays for Detecting Frog Sperm Chemoattraction - Burnett et al. [33]
    • Comparative in vivo Study of gp96 Adjuvanticity in X. laevis - Nedelkovska et al. 2010. [34]
    • Patch Clamp and Perfusion Techniques - Yang et al. [35]
    • Patch Clamp Recording of Ion Channels - Brown et al. [36]
    • Cation Transport in Xenopus Oocytes - Dürr et al.[37]
    • Stem cell-like Xenopus Embryonic Explants to Study Early Neural Developmental Features In Vitro and In Vivo - BC.Durand [38]
    • Dissection of Xenopus laevis Neural Crest for in vitro Explant Culture or in vivo Transplantation - Millet & Monsoro-Burq [39]
    • Reconstitution Of β-catenin Degradation In Xenopus Egg Extract. Chen et al. 2020. [40]

Protocols published in Journals

    • Morpholino Studies in Xenopus Brain Development, Bestman and Cline. 2019, Brain Development pp 377-395, Part of the Methods in Molecular Biology book series (MIMB, volume 2047) [[41]]

Cold Spring Harbor Xenopus Protocols Edited by Hazel Sive. published online 2017-2020. [42]

Note: External links to CSHL press are provided but a subscription fee is required for access most CSHL protocols.
All CSHL protocol articles are Copyright 2018, 2019, or 2020  Cold Spring Harbor Laboratory Press- Request permission to re-use images/figures accordingly.

General Research Protocols

    • Whole-Mount In Situ Hybridization of Xenopus Embryos. Jean-Pierre Saint-Jeannet. 2017 [43]
    • Whole-Mount In Situ Hybridization of Xenopus Oocytes. Diana Bauermeister and Tomas Pieler. 2018. [44]
    • Fluorescence In Situ Hybridization of Cryosectioned Xenopus Oocytes. Christopher R. Neil and Kimberly Mowry. 2018. [45]
    • Whole-Mount Immunocytochemistry in Xenopus. Michael W. Klymkowsky. 2018. [46]
    • Microinjection of mRNAs and Oligonucleotides. Sally A. Moody. 2018. [47]
    • Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis. Yuuri Yasuoka and Masanori Taira. 2019. [48]
    • Whole-Mount Immunofluorescence for Visualizing Endogenous Protein and Injected RNA in Xenopus Oocytes. Samantha P. Jeschonek and Kimberly L. Mowry. 2018. [49]
    • Isolation of Xenopus Oocytes. Karen Newman, Tristan Aguero, and Mary Lou King. 2018. [50]
    • Microinjection of Xenopus Oocytes. Tristan Aguero, Karen Newman, and Mary Lou King. 2018. [51]
    • Oocyte Host-Transfer and Maternal mRNA Depletion Experiments in Xenopus. Douglas W. Houston. 2018. [52].
    • Applying Tensile and Compressive Force to Xenopus Animal Cap Tissue. Georgina K. Goddard, Nawseen Tarannum, and Sarah Woolner. 2020. [53].
    • RNAi-Mediated Loss of Function of Xenopus Immune Genes by Transgenesis. Eva-Stina Edholm and Jacques Robert. 2018. [54]
    • Flow Cytometric Analysis of Xenopus Immune Cells. Eva-Stina Edholm. [55]
    • Isolation and Demembranation of Xenopus Sperm Nuclei. James W. Hazel and Jesse C. Gatlin. 2018. [56]
    • Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in Xenopus Oocytes. Guohui Zhang and Jianmin Cui. 2018. [57]
    • Heterologous Protein Expression in the Xenopus Oocyte. Jonathan S. Marchant. 2018. [58]
    • Isolation and Analysis of Xenopus Germinal Vesicles. Garry T. Morgan. 2018. [59]
    • Xenopus Tadpole Tissue Harvest. Matthew D. Patmann, Leena H. Shewade, Katelin A. Schneider, and Daniel R. Buchholz. 2017 [60].
    • In Vivo Transfection of Naked DNA into Xenopus Tadpole Tail Muscle. Lindsey Marshall, Fabrice Girardot, Barbara A. Demeneix, and Laurent Coen. 2017. [61]
    • Cell Proliferation Analysis during Xenopus Metamorphosis: Using 5-Ethynyl-2-Deoxyuridine (EdU) to Stain Proliferating Intestinal Cells. Morihiro Okada and Yun-Bo Shi. 2017. [62]

'Omics

    • Transcriptomics and Proteomics Methods for Xenopus Embryos and Tissues. Michael J. Gilchrist, Gert Jan C. Veenstra, and Ken W.Y. Cho. 2020. ''Topic Introduction'' [63]
    • Mass Spectrometry-Based Absolute Quantification of Single Xenopus Embryo Proteomes. Rik G.H. Lindeboom, Arne H. Smits, Matteo Perino, Gert Jan C. Veenstra, and Michiel Vermeulen. [64]
    • INTACT Proteomics in Xenopus. Lauren Wasson, Nirav M. Amin, and Frank L. Conlon. 2019. [65]

Genomes, Chromosomes, DNA, Chromatin and Epigenetics

    • In Vitro Transcription Systems. Michael R. Green and Joseph Sambrook. [66]
    • ChIP-Sequencing in Xenopus Embryos. Saartje Hontelez, Ila van Kruijsbergen, and Gert Jan C. Veenstra. 2019. [67]
    • Chromatin Characterization in Xenopus laevis Cell-Free Egg Extracts and Embryos. Wei-Lin Wang, Takashi Onikubo, and David Shechter. 2019. [68].
    • Analysis of Chromatin Binding of Ectopically Expressed Proteins in Early Xenopus Embryos. Laura J.A. Hardwick and Anna Philpott. 2019. [69].
    • Analysis of Phosphorylation Status of Ectopically Expressed Proteins in Early Xenopus Embryos. Laura J.A. Hardwick and Anna Philpott. 2019. [70].
    • Assessing Ubiquitylation of Individual Proteins Using Xenopus Extract Systems. Gary S. McDowell and Anna Philpott. 2019. [71]
    • Generating a Three-Dimensional Genome from Xenopus with Hi-C. Ian K. Quigley and Sven Heinz. 2019. [72]
    • An RNA-Seq Protocol for Differential Expression Analysis. Nick D.L. Owens, Elena De Domenico, and Michael J. Gilchrist. 2019. [73]
    • DNase-seq to Study Chromatin Accessibility in Early Xenopus tropicalis Embryos. Jin Sun Cho, Ira L. Blitz, and Ken W.Y. Cho. 2019 [74]
    • Mapping Chromatin Features of Xenopus Embryos. George E. Gentsch and James C. Smith. 2019. [75]
    • Reconstituting Nuclear and Chromosome Dynamics Using Xenopus Extracts. Susannah Rankin. 2019 [76]
    • Extracts for Analysis of DNA Replication in a Nucleus-Free System. Justin Sparks and Johannes C. Walter. 2019. [77]
    • Endoplasmic Reticulum Network Formation with Xenopus Egg Extracts. Songyu Wang, Fabian B. Romano, and Tom A. Rapoport. 2019. [78].
    • Chromosome Cohesion and Condensation in Xenopus Egg Extracts. Eulália M.L. da Silva and Susannah Rankin. 2019. [79]
    • Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues. Nicolas Buisine, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. 2018. [80]
    • Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues. 2018. Nicolas Buisine, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. [81]

Endocrinology, Toxicology and Metamorphosis

    • Methods for Investigating the Larval Period and Metamorphosis in Xenopus. Daniel R. Buchholz and Yun-Bo Shi. ''Topic Introduction'' [82].
    • Frog Embryo Teratogenesis Assay—Xenopus (FETAX): Use in Alternative Preclinical Safety Assessment. Douglas J. Fort and Michael Mathis. 2018. [83]
    • Following Endocrine-Disrupting Effects on Gene Expression in Xenopus laevis. Petra Spirhanzlova, Michelle Leemans, Barbara A. Demeneix, and Jean-Baptiste Fini. 2019. Full-text link: [84].
    • Larval Thymectomy of Xenopus laevis. Sara Mashoof, Breanna Breaux, and Michael F. Criscitiello. 2018. [85]

Cell-free extracts, Cell-free systems

    • The Use of Cell-Free Xenopus Extracts to Investigate Cytoplasmic Events. Romain Gibeaux and Rebecca Heald. 2019.''Topic Introduction'' [86]
    • Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems. Gary S. McDowell and Anna Philpott. 2019. [87].
    • Special Considerations for Making Explants and Transplants with Xenopus tropicalis. 2019. Marilyn Fisher and Robert M. Grainger. [88]. Supplemental Material [89].
    • Filopodia-Like Structure Formation from Xenopus Egg Extracts. Helen M. Fox and Jennifer L. Gallop. 2019. [90].
    • Centromere and Kinetochore Assembly in Xenopus laevis Egg Extract. Julio C. Flores Servin and Aaron F. Straight. 2018. [91]
    • Dissecting Protein Complexes in Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts. Jae-Geun Song and Sabine Petry. 2018. [92]
    • Protein Immunodepletion and Complementation in Xenopus laevis Egg Extracts. Christopher Jenness, David J. Wynne, and Hironori Funabiki. 2018. [93]
    • Analysis of Mitotic Checkpoint Function in Xenopus Egg Extracts. Yinghui Mao. 2018 [94]
    • Chemical Screening Using Cell-Free Xenopus Egg Extract. Matthew R. Broadus and Ethan Lee. 2018. [95]
    • Robustly Cycling Xenopus laevis Cell-Free Extracts in Teflon Chambers. Jeremy B. Chang and James E. Ferrell Jr. [96]
    • Microfluidic Encapsulation of Demembranated Sperm Nuclei in Xenopus Egg Extracts. John Oakey and Jesse C. Gatlin. 2018. [97]
    • Nucleus Assembly and Import in Xenopus laevis Egg Extract. Pan Chen and Daniel L. Levy. 2018. [98]
    • Assembly of Spindles and Asters in Xenopus Egg Extracts. Christine M. Field and Timothy J. Mitchison. 2018. [99]
    • Preparation of Cellular Extracts from Xenopus Eggs and Embryos. Matthew C. Good and Rebecca Heald. 2018. [100]
    • Using the Xenopus Oocyte Toolbox. Kim L. Mowry. 2020. [101]

Immunobiology

    • Raising Antibodies for Use in Xenopus. Maya Z. Piccinni and Matthew J. Guille. 2020. [102]
    • Purifying Antibodies Raised against Xenopus Peptides. Maya Z. Piccinni and Matthew J. Guille. 2020. [103]
    • Assessing the Immune Response When Raising Antibodies for Use in Xenopus. Maya Z. Piccinni and Matthew J. Guille. 2020. [104].
    • Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus. Louise A. Rollins-Smith and Jacques Robert. 2019. [105].
    • Skin Grafting in Xenopus laevis: A Technique for Assessing Development and Immunological Disparity. Yumi Izutsu. 2019. [106]
    • Adoptive Transfer of Fluorescently Labeled Immune Cells in Xenopus. Kun Hyoe Rhoo and Jacques Robert. [107]
    • Assessing Antibody Responses to Pathogens or Model Antigens in Xenopus by Enzyme-Linked Immunosorbent Assay (ELISA). Francisco De Jesús Andino and Jacques Robert. 2019 [108]
    • In Vivo Assessment of Neural Precursor Cell Cycle Kinetics in the Amphibian Retina. Morgane Locker and Muriel Perron2019. [109], Supplemental Material [110]
    • Protein Immunodepletion and Complementation in Xenopus laevis Egg Extracts. Christopher Jenness, David J. Wynne, and Hironori Funabiki. 2018. [111]
    • Elicitation of Xenopus laevis Tadpole and Adult Frog Peritoneal Leukocytes. Leon Grayfer. 2018. [112]
    • RNAi-Mediated Loss of Function of Xenopus Immune Genes by Transgenesis. Eva-Stina Edholm and Jacques Robert. 2018. [113]
    • Flow Cytometric Analysis of Xenopus Immune Cells. Eva-Stina Edholm. [114]

Neurobiology and tissue regeneration

    • Ex Vivo Eye Tissue Culture Methods for Xenopus. Jonathan J. Henry, Kimberly J. Perry, and Paul W. Hamilton. 2019. [115].
    • Methods for Examining Lens Regeneration in Xenopus. Jonathan J. Henry, Kimberly J. Perry, and Paul W. Hamilton. 2019. [116]
    • Tracing Central Nervous System Axon Regeneration in Xenopus. Kurt M. Gibbs and Ben G. Szaro. 2018. [117]
    • Cell Transplantation as a Method to Investigate Spinal Cord Regeneration in Regenerative and Nonregenerative Xenopus Stages. Emilio E. Méndez-Olivos and Juan Larraín. 2018. [118]
    • Infrared Laser-Mediated Gene Induction at the Single-Cell Level in the Regenerating Tail of Xenopus laevis Tadpoles. Riho Hasugata, Shinichi Hayashi, Aiko Kawasumi-Kita, Joe Sakamoto, Yasuhiro Kamei, and Hitoshi Yokoyama. 2018. [119]
    • Rod-Specific Ablation Using the Nitroreductase/Metronidazole System to Investigate Regeneration in Xenopus. Reyna I. Martinez-De Luna and Michael E. Zuber. 2018. [120]
    • Studies of Limb Regeneration in Larval Xenopus. Anthony L. Mescher and Anton W. Neff. 2019. [121].
    • Bulk Electroporation-Mediated Gene Transfer into Xenopus Tadpole Brain. Cristina Sáenz de Miera, Ethan Parr, and Robert J. Denver. 2018. [122] . Supplemental Material [123].
    • nverse Drug Screening of Bioelectric Signaling and Neurotransmitter Roles: Illustrated Using a Xenopus Tail Regeneration Assay. Kelly G. Sullivan and Michael Levin. 2018. [124]

Fate mapping, Explants and Transplants

    • Dissecting and Culturing Animal Cap Explants. Kevin S. Dingwell and James C. Smith. 2018. [125]
    • Cranial Neural Crest Explants. Hélène Cousin and Dominique Alfandari. 2018. [126]
    • Einsteck Transplants. Hélène Cousin. 2019 [127]
    • Cleavage Blastomere Deletion and Transplantation to Test Cell Fate Commitment in Xenopus. Sally A. Moody. 2019. [128]
    • Cleavage Blastomere Explant Culture in Xenopus. Sally A. Moody. 2019. [129]
    • Lineage Tracing and Fate Mapping in Xenopus Embryos. Sally A. Moody. 2018. [130]
    • Collagen-Embedded Tumor Transplantations in Xenopus laevis Tadpoles. Maureen Banach and Jacques Robert. 2017 [131]
    • Organ Culture of the Xenopus Tadpole Intestine. Atsuko Ishizuya-Oka. 2017 [132]

CSHL Recipes

    • Embryo Lysis Buffer (Xenopus). (Recipe 1) CSHLP. 2019 [133]
    • Xenopus Embryo Lysis Buffer. (Recipe 2). CSHLP. 2019 [134]
    • Lysis Buffer for Xenopus (recipe3) CSHLP. 2019. [135]
    • DNA Isolation Buffer. CSHLP. 2019 [136]
    • Lysis Buffer for Xenopus Hi-C. CSHLP 2019. [137]
    • RIPA Buffer for Xenopus. CSHLP 2019. [138]
    • Amphibian Serum-Free (ASF) Medium Supplemented with Fetal Bovine Serum (FBS). CSHL 2019. [139]
    • Xenopus Eye Culture Medium. CSHLP 2019. [140]
    • Marc's Modified Ringer's (MMR) for Xenopus (1×). CSHLP. 2018. [141]
    • Marc's Modified Ringer's (MMR) for Xenopus (20×). CSHLP. 2019. [142]
    • Injection Buffer for Xenopus. CSHLP 2019. [143]
    • TE Buffer for Xenopus. CSHLP 2019. [144]
    • Proteinase K Buffer for Xenopus Oocytes. CSHLP 2018. [145]
    • PBT/PBT-Plus for Xenopus Oocytes. CSHL. 2018. [146]
    • Energy Mix for Xenopus Egg Extracts. CSHL 2018. [147]
    • Xenopus Oocyte Culture Medium (XOCM).CSHL 2018.[148]
    • PBT for Xenopus Oocyte FISH.CSHL 2018. [149]
    • Blocking Solution for Xenopus Oocytes. CSHL 2018. [150]
    • Aldehyde Fixative (MEMFA). CSHL 2018. [151]
    • Staining Buffer for Xenopus Embryos. CSHL 2017. [152]
    • Blocking Solution for Xenopus Embryos. CSHL 2017. [153]
    • Embryonic Xenopus Culture Media (CM). CSHL 2017. [154]
    • Hybridization Buffer (HB) for Xenopus Embryos. CSHL 2017. [155]

Cold Spring Harbor Xenopus Protocols 2007. Edited by Hazel Sive

    • Housing and Feeding of Xenopus laevis - Sive et al. [156]
    • Inducing Ovulation in Xenopus laevis - Sive et al. [157]
    • Xenopus laevis In Vitro Fertilization and Natural Mating Methods - Sive et al. [158]
    • Egg Collection and In Vitro Fertilization of the Western Clawed Frog Xenopus tropicalis - Showell & Conlon [159]
    • Isolation of Xenopus Oocytes - Sive et al. [160]
    • Isolating Xenopus laevis Testes - Sive et al. [161]
    • Dejellying Xenopus laevis Embryos - Sive et al. [162]
    • Removing the Vitelline Membrane from Xenopus laevis Embryos - Sive et al. [163]
    • Microinjection of Xenopus Embryos - Sive et al. [164]
    • Defolliculation of Xenopus Oocytes - Sive et al. [165]
    • Microinjection of Xenopus Oocytes - Sive et al. [166]
    • Animal Cap Isolation from Xenopus laevis - Sive et al. [167]
    • Xenopus laevis Keller Explants - Sive et al. [168]
    • Microinjection of RNA and Preparation of Secreted Proteins from Xenopus Oocytes - Sive et al. [169]
    • Calibration of the Injection Volume for Microinjection of Xenopus Oocytes and Embryos - Sive et al. [170]
    • Isolation of DNA from Red Blood Cells in Xenopus - Sive et al. [171]
    • Investigating Morphogenesis in Xenopus Embryos: Imaging Strategies, Processing, and Analysis - Kim & Davidson [172]
    • Low-Magnification Live Imaging of Xenopus Embryos for Cell and Developmental Biology - Wallingford [173]
    • High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology - Keiserman et al. [174]
    • Preparation of Fixed Xenopus Embryos for Confocal Imaging - Wallingford [175]
    • Whole-Mount Fluorescence Immunocytochemistry on Xenopus Embryos - Lee et al. [176]
    • Generation of Transgenic Xenopus laevis - Kroll & Amaya - [177] [178] [179]
    • In Vivo Time-Lapse Imaging of Neuronal Development in Xenopus - Ruthazer et al. [180]
    • Photoconversion for Tracking the Dynamics of Cell Movement in Xenopus laevis Embryos - Chernet et al. [181]
    • Single-Cell Electroporation in Xenopus - Liu & Haas [182]
    • Imaging Axon Pathfinding in Xenopus In Vivo - Leung & Holt [183]
    • A Versatile Protocol for mRNA Electroporation of Xenopus laevis Embryos - Chernet & Levin [184]

General Research Protocols

Animal Husbandry


Lab Solutions and Reagents (click each to view expanded content)


Generating Embryos


Transgenesis

in situ Hybridization

Immunohistochemistry


ChIP protocols

  • Chromatin immunoprecipitation analysis of Xenopus embryos., Methods Mol Biol. 2012;917:279-92. [192] [193]
    • Akkers RC, Jacobi UG, Veenstra GJ.
  • Chromatin immunoprecipitation in early Xenopus laevis embryos., Dev Dyn. 2009 Jun;238(6):1422-32. [194] [195]
    • Blythe SA, Reid CD, Kessler DS, Klein PS.


Histology

Embryo Staining Protocols (non in situ)


Immuno and Protein Protocols


Nucleic Acid Protocols


Oocyte Transfer Technique (Heasman/Wylie labs)


Xenopus Oocyte and Egg Extracts


Xenopus Tissue Culture